使用Mfuzz进行转录组基因表达模式聚类分析

使用Mfuzz进行转录组基因表达模式聚类分析

Mfuzz是用来进行不同时间点转录组数据表达模式聚类分析的R包,使用起来非常方便,直接输入不同样本归一化后的counts或者FPKM及TPM值就可进行聚类。输入文件的格式很简单:

输入数据:

attachments-2018-06-4otjU74w5b23bb986f3fd.png

行为基因,列为样本,保存为制表符分隔的txt文件。

## 安装R包
if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("Mfuzz")
## 加载R包
library("Mfuzz")
## 导入基因表达量
gene <- read.table("input.txt",header = T,row.names=1,sep="\t")
## 转换格式
gene_tpm <- data.matrix(gene)
eset <- new("ExpressionSet",exprs = gene_tpm)
## 过滤缺失超过25%的基因
gene.r <- filter.NA(eset, thres=0.25)

由于输入的表达量中不允许有缺失值NA出现,所以我们要填补缺失值。

## mean填补缺失
gene.f <- fill.NA(gene.r,mode="mean")
## knn/wknn方法表现更好,但是计算起来比较复杂
gene.f <- fill.NA(gene.r,mode="knn")
gene.f <- fill.NA(gene.r,mode="wknn")
## 过滤标准差为0的基因
tmp <- filter.std(gene.f,min.std=0)
## 标准化
gene.s <- standardise(tmp)

聚类时,我们需要输入两个参数,cmc是我们期望的聚类个数,由自己定义。m由mestimate计算得到。

## 聚类个数
c <- 6
## 计算最佳的m值
m <- mestimate(gene.s)
## 聚类
cl <- mfuzz(gene.s, c = c, m = m)
## 查看每类基因数目
cl$size
## 查看每类基因ID
cl$cluster[cl$cluster == 1]
## 输出基因ID
write.table(cl$cluster,"output.txt",quote=F,row.names=T,col.names=F,sep="\t")
## 绘制折线图
mfuzz.plot(gene.s,cl,mfrow=c(2,3),new.window= FALSE)


attachments-2020-07-Qc06TVUB5efbef161304e.png


更多生物信息课程:https://study.omicsclass.com/index


  • 发表于 2020-07-01 10:03
  • 阅读 ( 6510 )
  • 分类:转录组

0 条评论

请先 登录 后评论
omicsgene
omicsgene

生物信息

702 篇文章

作家榜 »

  1. omicsgene 702 文章
  2. 安生水 351 文章
  3. Daitoue 167 文章
  4. 生物女学霸 120 文章
  5. xun 82 文章
  6. rzx 78 文章
  7. 红橙子 78 文章
  8. CORNERSTONE 72 文章