质粒DNA制备基本原理及方法

义翘神州能够提供快速、高通量、高品质以及个性化的质粒DNA制备服务。不仅满足实验室研究人员的小量质粒DNA制备需求,也可为生物工业用户和医药公司等提供大规模的质粒DNA制备服务。义翘神州升级改造后的质粒DNA制备平台,采用GMP级别的生产线,对过程和最终产品的严格管控,确保了最终产品质量符合客户需求。义翘神州可以提供从μg级别,mg级别至g级别不同规模的科研级和工业级别的质粒生产服务,满足不同的需求。

    质粒是染色体外能够进行自主复制的遗传单位,当前通常用其来特指细菌、真菌、酵母菌和放线菌等生物中染色体以外的DNA分子。

    在基因工程领域,质粒常常被当做基因的载体使用。在分子生物学中,质粒DNA被当做基因运载工具具有非常广泛的应用。

    在质粒DNA的应用过程中,其纯度对于酶切、PCR扩增等实验结果有着比较大的影响,因此需要保证质粒DNA提取的纯度和效率。

    在细菌中提取质粒DNA通常按照以下步骤进行:

    第一步,培养细菌,使质粒扩增;

    第二步,进行细菌的收集和裂解;

    第三步,质粒DNA的分离和纯化。

    在质粒DNA的提取过程中,其提取效果和其大小呈现出正比例关系,越小越容易进行提取,这主要是由于,如果质粒DNA比较大的话,其特性机会和染色体DNA比较接近,这样想要将二者分离开来难度就会变大。

    在进行质粒DNA的分离时,适宜的条件是非常重要的,主要包括pH值、SDS浓度、时间和溶菌温度等,在适宜的条件下质粒DNA和染色体DNA才能够更好的分离开来。

    细菌浓度对于质粒DNA的提取也是非常重要的,如果细菌的浓度比较高,那么在溶菌时,溶菌液很难和细菌液充分混合,导致溶菌不彻底的问题,这样会造成质粒的回收率比较低;

    而如果细菌溶度比较低,溶菌液和菌液均分混合,会造成溶液中含有较多的蛋白质、染色体以及菌体碎片,在这样的情况下,沉淀时质粒回合这些物质共沉,进而导致质粒的回收率也会比较低。

    在生物学的相关研究之中,细菌质粒DNA的提取是比较常规的技术和操作,主要的方法有碱裂解法、煮沸法以及SDS裂解法等,下面对碱裂解法进行介绍。

    碱裂解法

    碱裂解法是当前应用比较广泛的质粒DNA提取方法,这种方法的优点在于提取的质粒DNA纯度高,操作便捷,缺点是需要较长的提纯时间。研究人员在缩短这一方法的提纯时间方面做了大量的研究,但是没有得到理想的效果,当前这一方法提取DNA的时间都在1.5h以上。

    碱裂解法提取质粒DNA的基本原理:首选,在菌液中加入溶液Ⅰ,细菌细胞悬浮,同时其中的EDTA会和Ca2+以及Mg2+鳌合,起到抑制DNase活性的作用;然后,加入溶液Ⅱ,将细胞裂解,在这个过程中蛋白质和少量质粒将会变质;

    再次,加入溶液Ⅲ,使多数蛋白质以及染色体DNA被沉淀,并使得质粒DNA复性。其中,该方法中起到裂解细菌作用的主要是溶液Ⅱ中的NaOH,正因如此该方法被称为碱裂解法,如果将其换为SDS,也能够提取出少量的质粒DNA,这是由于SDS也是碱性的,可以一定程度上破坏细菌的细胞膜。

    在这一方法中需要注意,NaOH溶液要现用现配,这个主要是由于其能够和空气中的CO2反应,从而使溶液的碱性降低,这样会影响提纯的效率。

    另外在加入溶液Ⅱ之后,操作时间不能够过长,这是因为染色体DNA在碱性条件下片段会慢慢断裂。另外需要注意的是,在操作过程中,混匀是一定要轻柔,从而在保证细菌沉淀可以充分的扩散在试剂中的前提下,避免已变性质粒DNA和染色体基因组DNA被机械剪切。

此外,在溶液Ⅲ加入之后,其中的SDS会和蛋白质结合,会产生大量的沉淀,SDS还会和醋酸钾结合,生成PDS,这一物质的溶解度远低于SDS,从而可以将大部分蛋白质和染色体DNA共沉淀,进而获得质粒。

义翘神州能够提供快速、高通量、高品质以及个性化的质粒DNA制备服务。不仅满足实验室研究人员的小量质粒DNA制备需求,也可为生物工业用户和医药公司等提供大规模的质粒DNA制备服务。义翘神州升级改造后的质粒DNA制备平台,采用GMP级别的生产线,对过程和最终产品的严格管控,确保了最终产品质量符合客户需求。义翘神州可以提供从μg级别,mg级别至g级别不同规模的科研级和工业级别的质粒生产服务,满足不同的需求。更多详情可以参看:https://cn.sinobiological.com/services/plasmid-dna-preparation-service

  • 发表于 2023-10-09 16:46
  • 阅读 ( 753 )
  • 分类:其他

你可能感兴趣的文章

相关问题

0 条评论

请先 登录 后评论
xiaoqin2023
xiaoqin2023

32 篇文章

作家榜 »

  1. omicsgene 702 文章
  2. 安生水 350 文章
  3. Daitoue 167 文章
  4. 生物女学霸 120 文章
  5. xun 82 文章
  6. rzx 78 文章
  7. 红橙子 78 文章
  8. CORNERSTONE 72 文章