picrust1 16S 微生物功能预测

picrust 16S 微生物功能预测

echo pick_otus:similarity 0.97 > otu_params.txt

echo pick_otus:otu_picking_method usearch61_ref >> otu_params.txt   #uclust_ref,usearch_ref, usearch61_ref

echo assign_taxonomy:similarity 0.8 >>otu_params.txt

echo assign_taxonomy:assignment_method uclust >>otu_params.txt # rdp, blast,rtax, mothur, uclust, sortmerna #如果是ITS/18S数据,数据库更改为UNITE,assignment_method方法改为blast。详细使用说明,请读官方文档http://qiime.org/scripts/assign_taxonomy.html

#echo assign_taxonomy:assignment_method rdp >>otu_params.txt

#echo assign_taxonomy:rdp_max_memory 20000 >>otu_params.txt

#echo assign_taxonomy:confidence 0.5 >>otu_params.txt


#对数据进行标准化与过滤

pick_closed_reference_otus.py -r $greengene_16S_97_seq \

    -t $greengene_16S_97_tax -i $workdir/5.pick_otu_qiime/qiime.fasta -f \

    -o pick_closed_reference_otus -p otu_params.txt  -s


filter_otus_from_otu_table.py -i pick_closed_reference_otus/otu_table.biom \

    -o pick_closed_reference_otus/otu_table_filtered.biom --min_count_fraction 0.00001 \

    --negate_ids_to_exclude -e $greengene_16S_97_seq

sort_otu_table.py -i pick_closed_reference_otus/otu_table_filtered.biom \

   -o pick_closed_reference_otus/closed_otu_table.biom


single_rarefaction.py -i pick_closed_reference_otus/closed_otu_table.biom \

    -o pick_closed_reference_otus/closed_otu_table_rare.biom -d 1604

biom convert -i pick_closed_reference_otus/closed_otu_table_rare.biom \

    -o pick_closed_reference_otus/closed_otu_table_rare.txt --to-tsv --header-key taxonomy



picrust2_pipeline.py -s pick_closed_reference_otus/rep_set/qiime_rep_set.fasta -i pick_closed_reference_otus/closed_otu_table_rare.biom -o picrust2_out_pipeline -p 10 


#校正拷贝数

normalize_by_copy_number.py -i pick_closed_reference_otus/closed_otu_table_rare.biom \

        -o normalized_otus.biom \

        -c $dbdir/picrust_data/16S_13_5_precalculated.tab.gz

biom convert -i normalized_otus.biom -o normalized_otus.txt --to-tsv --header-key taxonomy


#KEGG功能预测

predict_metagenomes.py -i normalized_otus.biom -o predictions_kegg.biom -c $dbdir/picrust_data/ko_13_5_precalculated.tab.gz

biom convert -i predictions_kegg.biom --to-tsv --header-key KEGG_Description -o predictions_kegg.txt


#COG功能预测

predict_metagenomes.py --type_of_prediction cog -i normalized_otus.biom -o predictions_cog.biom -c $dbdir/picrust_data/cog_13_5_precalculated.tab.gz

biom convert -i predictions_cog.biom --to-tsv --header-key COG_Description -o predictions_cog.txt


#KEGG功能预测结果分类汇总

categorize_by_function.py -i predictions_kegg.biom -c "KEGG_Pathways" -l 1 -o predictions_kegg_at_L1.biom

categorize_by_function.py -i predictions_kegg.biom -c "KEGG_Pathways" -l 2 -o predictions_kegg_at_L2.biom

categorize_by_function.py -i predictions_kegg.biom -c "KEGG_Pathways" -l 3 -o predictions_kegg_at_L3.biom

biom convert -i predictions_kegg_at_L1.biom --to-tsv --header-key KEGG_Pathways -o predictions_kegg_at_L1.txt

biom convert -i predictions_kegg_at_L2.biom --to-tsv --header-key KEGG_Pathways -o predictions_kegg_at_L2.txt

biom convert -i predictions_kegg_at_L3.biom --to-tsv --header-key KEGG_Pathways -o predictions_kegg_at_L3.txt


#COG功能预测结果分类汇总

categorize_by_function.py -i predictions_cog.biom -c "COG_Category" -l 1 -o predictions_cog_at_L1.biom 

categorize_by_function.py -i predictions_cog.biom -c "COG_Category" -l 2 -o predictions_cog_at_L2.biom 


biom convert -i predictions_cog_at_L1.biom --to-tsv --header-key COG_Category -o predictions_cog_at_L1.txt

biom convert -i predictions_cog_at_L2.biom --to-tsv --header-key COG_Category -o predictions_cog_at_L2.txt


#关注的功能有哪些细菌,所有结果此文件很大,需要自行运行得到结果

#metagenome_contributions.py  -i normalized_otus.biom  -o ko_metagenome_contributions.xls -c $dbdir/picrust_data/ko_13_5_precalculated.tab.gz

#metagenome_contributions.py  -i normalized_otus.biom   -t cog -o cog_metagenome_contributions.xls -c $dbdir/picrust_data/cog_13_5_precalculated.tab.gz

#只导出关心的功能

metagenome_contributions.py -i normalized_otus.biom \

    -o ko_metagenome_contributions1.xls -c $dbdir/picrust_data/ko_13_5_precalculated.tab.gz \

    -l K00001,K00002,K00004


metagenome_contributions.py  -i normalized_otus.biom   -t cog \

    -o cog_metagenome_contributions1.xls -c $dbdir/picrust_data/cog_13_5_precalculated.tab.gz \

  -l COG0001,COG0002



#利用qiime软件 汇总统计并可视化分析

echo summarize_taxa:md_identifier "KEGG_Pathways" >sum_taxa_picrust.txt

echo summarize_taxa:absolute_abundance True >> sum_taxa_picrust.txt  #注释掉即为相对丰度

echo summarize_taxa:level 1,2,3 >>sum_taxa_picrust.txt

summarize_taxa_through_plots.py -f -i predictions_kegg.biom -p sum_taxa_picrust.txt -o summarize_kegg_through_plots 


#alpha 多样性分析,统计的是注释到的每个样品中KO的数目

alpha_diversity.py -i predictions_kegg.biom -m observed_species,shannon,chao1,simpson,goods_coverage,ace -o alpha_div_index.txt 


#beta多样性分析,反应不同样品中功能组成的差异,没有进化树无法计算unifrac

echo beta_diversity:metrics binary_jaccard,bray_curtis,binary_euclidean > beta_params.txt

beta_diversity_through_plots.py -f -i predictions_kegg.biom -m $fastmap -o beta_diversity_through_plots  -p beta_params.txt


#转换成STAMP格式方便STAMP 差异统计分析

biom_to_stamp.py -m KEGG_Pathways predictions_kegg_at_L2.biom > predictions_kegg_at_L2.spf

biom_to_stamp.py -m KEGG_Pathways predictions_kegg_at_L3.biom > predictions_kegg_at_L3.spf

biom_to_stamp.py -m KEGG_Description predictions_kegg.biom > predictions_kegg.spf


biom_to_stamp.py predictions_cog_at_L1.biom > predictions_cog_at_L1.spf

biom_to_stamp.py predictions_cog_at_L2.biom > predictions_cog_at_L2.spf

biom_to_stamp.py predictions_cog.biom > predictions_cog.spf



#Lefse差异分析

koeken.py -i predictions_kegg_at_L3.biom     -m $fastmap  -l 3 -pc --split Description -cl loc -str 1     \

    --effect 3  --pval 0.05 -dp 300 -o lefse/loc_less_strict -pi


  • 发表于 2023-10-18 15:16
  • 阅读 ( 921 )
  • 分类:宏基因组

0 条评论

请先 登录 后评论
omicsgene
omicsgene

生物信息

707 篇文章

作家榜 »

  1. omicsgene 707 文章
  2. 安生水 352 文章
  3. Daitoue 167 文章
  4. 生物女学霸 120 文章
  5. xun 82 文章
  6. rzx 79 文章
  7. 红橙子 78 文章
  8. CORNERSTONE 72 文章