食管癌 10X多样本(GSE145370)

食管癌 10X多样本(GSE145370)

数据下载

wget -c "https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE145370&format=file" -O GSE145370_RAW.tar
#解压
tar xvf GSE145370_RAW.tar


准备map.txt 文件:

#accession	SampleID	gender	age	pathological_stage	tissue_type	patient
GSM4317409	S133A	 Male	60	IIIB	T	S133
GSM4317410	S134A	 Female	53	IIIA	T	S134
GSM4317411	S135A	 Male	71	IIA	T	S135
GSM4317412	S149A	 Male	81	IIA	T	S149
GSM4317413	S150A	 Male	73	IIIB	T	S150
GSM4317414	S158A	 Male	55	IIB	T	S158
GSM4317415	S159A	 Male	54	IIIB	T	S159
GSM4317416	S133B	 Male	60	IIIB	N	S133
GSM4317417	S134B	 Female	53	IIIA	N	S134
GSM4317418	S135B	 Male	71	IIA	N	S135
GSM4317419	S149B	 Male	81	IIA	N	S149
GSM4317420	S150B	 Male	73	IIIB	N	S150
GSM4317421	S158B	 Male	55	IIB	N	S158
GSM4317422	S159B	 Male	54	IIIB	N	S159


批量解压:

cat map.txt |grep -v "#"|while read a b c ;do mkdir $b;tar zxvf ${a}_${b}_filtered_feature_bc_matrix.tar.gz -C $b;done

结果目录:

attachments-2024-08-ozkrg6AI66c7042bb56aa.png


循环读入数据做质控:


cat map.txt|grep -v "#"|while read a b c d e f g;do

 Rscript $scripts/seurat_sc_qc.r  --data.dir   $b/filtered_feature_bc_matrix  --project GSE145370  \
    --nUMI.min 500 \
    --nUMI.max 50000 \
  --nGene.min 250 \
  --mito.gene.pattern "^MT.*-" \
  --percent_mito 25 \
  --log10GenesPerUMI 0.7 \
   -p $b  \
  --metadata.col.name accession SampleID gender age pathological_stage tissue_type patient \
--metadata.value $a $b $c $d $e $f $g done #合并数据 Rscript $scripts/merge_seurat_obj.r -i $(ls *.afterQC.rds) \ -o 02.merge -p GSE145370
#分群聚类 Rscript $scripts/seurat_sc_cluster.r --rds 02.merge/GSE145370.rds \
-p GSE145370 --resolution 0.5 -d 30 -o 03.cluster \
--vars.to.regress nUMI percent_mito --high.variable.genes 2000






  • 发表于 2024-08-22 16:48
  • 阅读 ( 626 )
  • 分类:转录组

0 条评论

请先 登录 后评论
omicsgene
omicsgene

生物信息

702 篇文章

作家榜 »

  1. omicsgene 702 文章
  2. 安生水 350 文章
  3. Daitoue 167 文章
  4. 生物女学霸 120 文章
  5. xun 82 文章
  6. 红橙子 78 文章
  7. rzx 76 文章
  8. CORNERSTONE 72 文章