R语言绘制差异表达火山图

R语言绘制差异表达火山图

下图是一篇文献中添加了基因标签的渐变色火山图,今天教大家如何使用R语言绘制一张类似的火山图。来自文章:Cell Rep. 2024;43(3):113784.

attachments-2024-10-9JCKIRzS670ccc769bf3e.png

1.安装R包

#设置镜像,
 local({r <- getOption("repos")
 r["CRAN"] <- "http://mirrors.tuna.tsinghua.edu.cn/CRAN/"
options(repos=r)})


# 依赖包列表:自动加载并安装
package_list <- c("ggplot2","ggrepel","dplyr","devtools")


# 判断R包加载是否成功来决定是否安装后再加载
for(p in package_list){
  if(!suppressWarnings(suppressMessages(require(p, character.only = TRUE, quietly = TRUE, warn.conflicts = FALSE)))){
    install.packages(p,  warn.conflicts = FALSE)
    suppressWarnings(suppressMessages(library(p, character.only = TRUE, quietly = TRUE, warn.conflicts = FALSE)))
  }
}


2.设置FC和FDR的阈值线

fc_cutoff <- 2
fdr_cutoff <- 0.01

3.读入数据

#设置工作路径
setwd("/share/work")
data<-read.table("Volcano.txt", header=TRUE,sep = "\t")

数据格式如下表头不要改)

ID  FDR  log2FC  sign
Trans_newGene_1010  0.1719571  -0.327617885  NA
Trans_newGene_1013  9.65812E-10  -0.905601526  NA
Trans_newGene_1014  0.268121627  0.212668419  NA
Trans_newGene_1026  0.361458835  -0.371175921  NA
Trans_newGene_1027  0.514220593  -0.189095293  NA
Trans_newGene_1055  0.400366453  0.287239534  NA
Trans_newGene_1069  0.038485409  0.667683474  NA
Trans_newGene_1071  0.65302006  0.180040874  NA
Trans_newGene_1084  5.27862E-05  1.314071476  NA


第一列:基因ID;第二列:FDR值;第三列:log2FC值;第四列:要显示的基因名称,不显示的都用NA。

4.添加上下调信息列-regulated

data$regulated <- case_when(data$log2FC > log2(fc_cutoff) & data$FDR < fdr_cutoff ~ "up",
                      data$log2FC < -log2(fc_cutoff) & data$FDR < fdr_cutoff ~ "down",
                      abs(data$log2FC) <= log2(fc_cutoff) ~ "normal",
                      data$FDR >= fdr_cutoff ~ "normal")
head(data)

 添加上下调信息后的数据:


attachments-2024-10-dpwIBJFl670ccc989fb73.png

#转换为因子
data$regulated <- factor(data$regulated, levels = c("up","down","normal"), ordered = T)

5.ggplot2绘图


mycolor1 <- c("#008EBE","#FF890E")
top.mar=0.2
right.mar=0.2
bottom.mar=0.2
left.mar=0.2


p <-ggplot(data=data,aes(log2FC,-log10(FDR),color=-log10(FDR))) +
  geom_point(size=2,alpha=0.9)+
  scale_colour_gradient2(low = mycolor1[1],
                         mid = mycolor1[2],
                         high = mycolor1[2],
                         midpoint = 50,             #midpoint = 75 指定颜色渐变的中点,这意味着在数值为75时颜色会是mid指定的颜色
                         guide = "none") +


  geom_point(data = subset(data, !is.na(sign)),
             aes(x = log2FC, y = -log10(FDR)),
             shape = 1, size = 2, stroke = 1.2, color = "black") + # 描边的点


  geom_label_repel(aes(label=sign), fontface="bold",
                   color="grey50", box.padding=unit(0.35, "lines"),
                   point.padding=unit(0.5, "lines"), segment.colour = "grey50")+


  geom_hline(yintercept = c(-log10(fdr_cutoff)),
             linewidth = 0.5,
             color = "orange",
             lty = "dashed")+


  theme_classic()+
  theme(text=element_text(family = "sans",colour ="gray30",size = 10),
        axis.line = element_line(linewidth = 0.6,colour = "gray30"),
        axis.ticks = element_line(linewidth = 0.6,colour = "gray30"),
        axis.ticks.length = unit(1.5,units = "mm"),
        plot.margin=unit(x=c(top.mar,right.mar,bottom.mar,left.mar),
                         units="inches"))
p



结果如下图所示:


attachments-2024-10-lYJLaGTy670cccbd71a1c.png

好了,小编就先给大家介绍到这里希望对您的科研能有所帮助!祝您工作生活顺心快乐!
参考文献:Kilfeather, P., Khoo, J. H., Wagner, K., Liang, H., Caiazza, M. C., An, Y., Zhang, X., Chen, X., Connor-Robson, N., Shang, Z., & Wade-Martins, R. (2024). Single-cell spatial transcriptomic and translatomic profiling of dopaminergic neurons in health, aging, and disease. Cell reports43(3), 113784. https://doi.org/10.1016/j.celrep.2024.113784

  • 发表于 2024-10-14 15:48
  • 阅读 ( 238 )
  • 分类:R

你可能感兴趣的文章

0 条评论

请先 登录 后评论
安生水
安生水

347 篇文章

作家榜 »

  1. omicsgene 698 文章
  2. 安生水 347 文章
  3. Daitoue 167 文章
  4. 生物女学霸 120 文章
  5. xun 82 文章
  6. 红橙子 78 文章
  7. rzx 74 文章
  8. CORNERSTONE 72 文章