scanpy 中 ScTransform分析:

scanpy 中 ScTransform分析:

方法一:


import scanpy as sc
from scipy.sparse import issparse

def pyScTransform(adata, output_file=None):
    """
    Function to call scTransform from Python
    """
    import rpy2.robjects as ro
    import anndata2ri
    ro.r('library(Seurat)')
    ro.r('library(scater)')
    anndata2ri.activate()
    sc.pp.filter_genes(adata, min_cells=5)
    
    if issparse(adata.X):
        if not adata.X.has_sorted_indices:
            adata.X.sort_indices()
    for key in adata.layers:
        if issparse(adata.layers[key]):
            if not adata.layers[key].has_sorted_indices:
                adata.layers[key].sort_indices()
    ro.globalenv['adata'] = adata
    ro.r('seurat_obj = as.Seurat(adata, counts="X", data = NULL)')
    ro.r('res <- SCTransform(object=seurat_obj, return.only.var.genes = FALSE, do.correct.umi = FALSE)')
    norm_x = ro.r('res@assays$SCT@scale.data').T
    adata.layers['normalized'] = norm_x
    if output_file:
        adata.write(output_file)



#方法二:


import anndata2ri
from rpy2.robjects.packages import importr
from rpy2.robjects import r, pandas2ri
import numpy as np

anndata2ri.activate()
pandas2ri.activate()

def run_sctransform(adata, layer=None, **kwargs):
    if layer:
        mat = adata.layers[layer]
    else:
        mat = adata.X

    # Set names for the input matrix
    cell_names = adata.obs_names
    gene_names = adata.var_names
    r.assign('mat', mat.T)
    r.assign('cell_names', cell_names)
    r.assign('gene_names', gene_names)
    r('colnames(mat) <- cell_names')
    r('rownames(mat) <- gene_names')

    seurat = importr('Seurat')
    r('seurat_obj <- CreateSeuratObject(mat)')

    # Run
    for k, v in kwargs.items():
        r.assign(k, v)
    kwargs_str = ', '.join([f'{k}={k}' for k in kwargs.keys()])
    r(f'seurat_obj <- SCTransform(seurat_obj,vst.flavor="v2", {kwargs_str})')

    # Extract the SCT data and add it as a new layer in the original anndata object
    sct_data = np.asarray(r['as.matrix'](r('seurat_obj@assays$SCT@data')))
    adata.layers['SCT_data'] = sct_data.T
    sct_data = np.asarray(r['as.matrix'](r('seurat_obj@assays$SCT@counts')))
    adata.layers['SCT_counts'] = sct_data.T
    return adata
adata.layers["data"] = adata.X.copy()

adata = run_sctransform(adata, layer="counts")

R[write to console]: Running SCTransform on assay: RNA
R[write to console]: Place corrected count matrix in counts slot
R[write to console]: Set default assay to SCT

adata
    layers: 'counts', 'data', 'SCT_data', 'SCT_counts'
  • 发表于 1天前
  • 阅读 ( 25 )
  • 分类:转录组

你可能感兴趣的文章

相关问题

0 条评论

请先 登录 后评论
omicsgene
omicsgene

生物信息

700 篇文章

作家榜 »

  1. omicsgene 700 文章
  2. 安生水 347 文章
  3. Daitoue 167 文章
  4. 生物女学霸 120 文章
  5. xun 82 文章
  6. 红橙子 78 文章
  7. rzx 75 文章
  8. CORNERSTONE 72 文章