几种主要色彩模型
RGB (见百度百科)
RGB色彩模式是工业界的一种颜色标准,是通过对红(R)、绿(G)、蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的,RGB即是代表红、绿、蓝三个通道的颜色。通常情况下,RGB各有256级亮度,用数字表示为从0、1、2...直到255。按照计算,256级的RGB色彩总共能组合出约1678万种色彩,即256×256×256=16777216。通常也被简称为1600万色或千万色。
Lab (见百度百科)
Lab色彩模型是由亮度(L)和有关色彩的a, b三个要素组成。L表示亮度(Luminosity),a表示从洋红色至绿色的范围,b表示从黄色至蓝色的范围。L的值域由0到100,L=50时,就相当于50%的黑;a和b的值域都是由+127至-128,其中+127 a就是红色,渐渐过渡到-128 a的时候就变成绿色;同样原理,+127 b是黄色,-128 b是蓝色。所有的颜色就以这三个值交互变化所组成。例如,一块色彩的Lab值是L = 100,a = 30, b = 0, 这块色彩就是粉红色。(注:此模式中的a轴,b轴颜色与RGB不同,洋红色更偏红,绿色更偏青,黄色略带红,蓝色有点偏青色)
此外还涉及多种其他色彩模型,包括CMYK、YCrCb、HSV等。
R语言取色
R语言中可以直接基于rgb()函数进行RGB色彩模型取色,HSV取色可以依据hsv函数完成,同时可以借助rgb2hsv()将rgb转化成hsv。
相关参考:GEO芯片数据挖掘
1. 文章越来越难发?是你没发现新思路,基因家族分析发2-4分文章简单快速,学习链接:基因家族分析实操课程、基因家族文献思路解读
2. 转录组数据理解不深入?图表看不懂?点击链接学习深入解读数据结果文件,学习链接:转录组(有参)结果解读;转录组(无参)结果解读
3. 转录组数据深入挖掘技能-WGCNA,提升你的文章档次,学习链接:WGCNA-加权基因共表达网络分析
4. 转录组数据怎么挖掘?学习链接:转录组标准分析后的数据挖掘、转录组文献解读
5. 微生物16S/ITS/18S分析原理及结果解读、OTU网络图绘制、cytoscape与网络图绘制课程
6. 生物信息入门到精通必修基础课:linux系统使用、perl入门到精通、perl语言高级、R语言入门、R语言画图
7. 医学相关数据挖掘课程,不用做实验也能发文章:TCGA-差异基因分析、GEO芯片数据挖掘、GEO芯片数据标准化、GSEA富集分析课程、TCGA临床数据生存分析、TCGA-转录因子分析、TCGA-ceRNA调控网络分析
8.其他,二代测序转录组数据自主分析、NCBI数据上传、二代测序数据解读
如果觉得我的文章对您有用,请随意打赏。你的支持将鼓励我继续创作!