python特殊属性和方法的详解与运用

带有下划线的一些特殊属性与方法详解

Python 用下划线作为变量前缀和后缀指定特殊变量


_xxx 不能用’from module import *’导入

__xxx__ 系统定义名字

__xxx 类中的私有变量名

核心风格:避免用下划线作为变量名的开始。

 

因为下划线对解释器有特殊的意义,而且是内建标识符所使用的符号,我们建议程序员避免用下划线作为变量名的开始。一般来讲,变量名_xxx被看作是“私有的”,在模块或类外不可以使用。当变量是私有的时候,用_xxx 来表示变量是很好的习惯。因为变量名__xxx__对Python 来说有特殊含义,对于普通的变量应当避免这种命名风格。

“单下划线” 开始的成员变量叫做保护变量,意思是只有类对象和子类对象自己能访问到这些变量;
“双下划线” 开始的是私有成员,意思是只有类对象自己能访问,连子类对象也不能访问到这个数据。

以单下划线开头(_foo)的代表不能直接访问的类属性,需通过类提供的接口进行访问,不能用“from xxx import *”而导入;以双下划线开头的(__foo)代表类的私有成员;以双下划线开头和结尾的(__foo__)代表python里特殊方法专用的标识,如 __init__()代表类的构造函数。

现在我们来总结下所有的系统定义属性和方法, 先来看下保留属性:

>>> Class1.__doc__ # 类型帮助信息 'Class1 Doc.' 
>>> Class1.__name__ # 类型名称 'Class1' 
>>> Class1.__module__ # 类型所在模块 '__main__' 
>>> Class1.__bases__ # 类型所继承的基类 (<type 'object'>,) 
>>> Class1.__dict__ # 类型字典,存储所有类型成员信息。 <dictproxy object at 0x00D3AD70> 
>>> Class1().__class__ # 类型 <class '__main__.Class1'> 
>>> Class1().__module__ # 实例类型所在模块 '__main__' 
>>> Class1().__dict__ # 对象字典,存储所有实例成员信息。 {'i': 1234}
接下来是保留方法,可以把保留方法分类:

类的基础方法

初始化一个实例x = MyClass()x.__init__()
字符串的“官方”表现形式repr(x)x.__repr__()
字符串的“非正式”值str(x)x.__str__()
字节数组的“非正式”值bytes(x)x.__bytes__()
格式化字符串的值format(x, format_spec)x.__format__(format_spec)
  1. 对 __init__() 方法的调用发生在实例被创建 之后 。如果要控制实际创建进程,请使用 __new__() 方法。
  2. 按照约定, __repr__()方法所返回的字符串为合法的 Python 表达式。
  3. 在调用 print(x) 的同时也调用了 __str__()方法。
  4. 由于 bytes 类型的引入而从 Python 3 开始出现

 

行为方式与迭代器类似的类

遍历某个序列iter(seq)seq.__iter__()
从迭代器中获取下一个值next(seq)seq.__next__()
按逆序创建一个迭代器reversed(seq)seq.__reversed__()
  1. 无论何时创建迭代器都将调用 __iter__()方法。这是用初始值对迭代器进行初始化的绝佳之处。
  2. 无论何时从迭代器中获取下一个值都将调用 __next__()方法。
  3. __reversed__() 方法并不常用。它以一个现有序列为参数,并将该序列中所有元素从尾到头以逆序排列生成一个新的迭代器。

 

计算属性

获取一个计算属性(无条件的)x.my_propertyx.__getattribute__('my_property')
获取一个计算属性(后备)x.my_propertyx.__getattr__('my_property')
设置某属性x.my_property = valuex.__setattr__('my_property',value)
删除某属性del x.my_propertyx.__delattr__('my_property')
列出所有属性和方法dir(x)x.__dir__()
  1. 如果某个类定义了 __getattribute__() 方法,在 每次引用属性或方法名称时Python 都调用它(特殊方法名称除外,因为那样将会导致讨厌的无限循环)。
  2. 如果某个类定义了 __getattr__() 方法,Python 将只在正常的位置查询属性时才会调用它。如果实例 x 定义了属性color,x.color 将 不会 调用x.__getattr__('color');而只会返回x.color已定义好的值。
  3. 无论何时给属性赋值,都会调用 __setattr__()方法。
  4. 无论何时删除一个属性,都将调用 __delattr__()方法。
  5. 如果定义了 __getattr__() 或 __getattribute__() 方法, __dir__() 方法将非常有用。通常,调用 dir(x) 将只显示正常的属性和方法。如果 __getattr()__方法动态处理color 属性,dir(x) 将不会将 color 列为可用属性。可通过覆盖 __dir__() 方法允许将color 列为可用属性,对于想使用你的类但却不想深入其内部的人来说,该方法非常有益。


行为方式与函数类似的类

可以让类的实例变得可调用——就像函数可以调用一样——通过定义 __call__() 方法。

像调用函数一样“调用”一个实例my_instance()my_instance.__call__()

zipfile 模块 通过该方式定义了一个可以使用给定密码解密 经加密 zip 文件的类。该 zip解密 算法需要在解密的过程中保存状态。通过将解密器定义为类,使我们得以在 decryptor 类的单个实例中对该状态进行维护。状态在__init__() 方法中进行初始化,如果文件 经加密 则进行更新。但由于该类像函数一样“可调用”,因此可以将实例作为map() 函数的第一个参数传入,代码如下:


# excerpt from zipfile.py class _ZipDecrypter:  
    def __init__(self, pwd):  
        self.key0 = 305419896 
        self.key1 = 591751049 
        self.key2 = 878082192  
        for p in pwd:  
             self._UpdateKeys(p) 
    def __call__(self, c):   
         assert isinstance(c, int)  
         k = self.key2 | 2 c = c ^ (((k * (k^1)) >>  & 255)  
         self._UpdateKeys(c) 
         return c   
zd = _ZipDecrypter(pwd)  
bytes = zef_file.read(12)  
h = list(map(zd, bytes[0:12]))  

  1. _ZipDecryptor 类维护了以三个旋转密钥形式出现的状态,该状态稍后将在 _UpdateKeys()方法中更新(此处未展示)。
  2. 该类定义了一个 __call__() 方法,使得该类可像函数一样调用。在此例中,__call__()对 zip 文件的单个字节进行解密,然后基于经解密的字节对旋转密码进行更新。
  3. zd 是 _ZipDecryptor 类的一个实例。变量 pwd 被传入 __init__()方法,并在其中被存储和用于首次旋转密码更新。
  4. 给出 zip 文件的头 12 个字节,将这些字节映射给 zd 进行解密,实际上这将导致调用 __call__() 方法 12 次,也就是 更新内部状态并返回结果字节 12 次。

 

行为方式与序列类似的类

如果类作为一系列值的容器出现——也就是说如果对某个类来说,是否“包含”某值是件有意义的事情——那么它也许应该定义下面的特殊方法已,让它的行为方式与序列类似。

序列的长度len(seq)seq.__len__()
了解某序列是否包含特定的值x in seqseq.__contains__(x)

cgi 模块 在其FieldStorage 类中使用了这些方法,该类用于表示提交给动态网页的所有表单字段或查询参数。


# A script which responds to http://example.com/search?q=cgi import cgi fs = cgi.FieldStorage() 
if 'q' in fs:  
    do_search() 

# An excerpt from cgi.py that explains how that works class FieldStorage: . . . def __contains__(self, key): 
     if self.list is None:  
          raise TypeError('not indexable')  
     return any(item.name == key for item in self.list) 

def __len__(self): 
 return len(self.keys()) 

 

一旦创建了 cgi.FieldStorage 类的实例,就可以使用 “in” 运算符来检查查询字符串中是否包含了某个特定参数。
  1. 而 __contains__()方法是令该魔法生效的主角。
  2. 如果代码为 if 'q' in fs,Python 将在 fs 对象中查找 __contains__() 方法,而该方法在cgi.py 中已经定义。'q' 的值被当作key 参数传入__contains__()方法。
  3. 同样的 FieldStorage 类还支持返回其长度,因此可以编写代码 len(fs) 而其将调用FieldStorage 的__len__()方法,并返回其识别的查询参数个数。
  4. self.keys() 方法检查 self.list is None 是否为真值,因此 __len__ 方法无需重复该错误检查。

 

行为方式与字典类似的类

在前一节的基础上稍作拓展,就不仅可以对 “in” 运算符和 len() 函数进行响应,还可像全功能字典一样根据键来返回值。

通过键来获取值x[key]x.__getitem__(key)
通过键来设置值x[key] = valuex.__setitem__(key, value)
删除一个键值对del x[key]x.__delitem__(key)
为缺失键提供默认值x[nonexistent_key]x.__missing__(nonexistent_key)

cgi 模块 的FieldStorage 类 同样定义了这些特殊方法,也就是说可以像下面这样编码:


# A script which responds to http://example.com/search?q=cgi import cgi fs = cgi.FieldStorage() if 'q' in fs:  
    do_search(fs['q']) 

# An excerpt from cgi.py that shows how it works class FieldStorage: . . . 
def __getitem__(self, key):      if self.list is None:  
          raise TypeError('not indexable')  
    found = [] 
    for item in self.list:  
          if item.name == key:  
          found.append(item) 
    if not found: 
          raise KeyError(key) 
    if len(found) == 1:
          return found[0]  
    else:  return found 

 

  1. fs 对象是 cgi.FieldStorage 类的一个实例,但仍然可以像 fs['q']这样估算表达式。
  2. fs['q'] 将 key 参数设置为 'q' 来调用 __getitem__() 方法。然后它将在其内部维护的查询参数列表 (self.list) 中查找一个.name 与给定键相符的字典项。

 

可比较的类

我将此内容从前一节中拿出来使其单独成节,是因为“比较”操作并不局限于数字。许多数据类型都可以进行比较——字符串、列表,甚至字典。如果要创建自己的类,且对象之间的比较有意义,可以使用下面的特殊方法来实现比较。

相等x == yx.__eq__(y)
不相等x != yx.__ne__(y)
小于x < yx.__lt__(y)
小于或等于x <= yx.__le__(y)
大于x > yx.__gt__(y)
大于或等于x >= yx.__ge__(y)
布尔上上下文环境中的真值if x:x.__bool__()

☞如果定义了 __lt__() 方法但没有定义 __gt__() 方法,Python 将通过经交换的算子调用__lt__() 方法。然而,Python 并不会组合方法。例如,如果定义了__lt__() 方法和 __eq()__ 方法,并试图测试是否 x <= y,Python 不会按顺序调用__lt__() 和__eq()__ 。它将只调用__le__() 方法。

可序列化的类

Python 支持 任意对象的序列化和反序列化。(多数 Python 参考资料称该过程为 “pickling” 和 “unpickling”)。该技术对与将状态保存为文件并在稍后恢复它非常有意义。所有的内置数据类型 均已支持 pickling 。如果创建了自定义类,且希望它能够 pickle,阅读pickle 协议 了解下列特殊方法何时以及如何被调用。

自定义对象的复制copy.copy(x)x.__copy__()
自定义对象的深度复制copy.deepcopy(x)x.__deepcopy__()
在 pickling 之前获取对象的状态pickle.dump(x, file)x.__getstate__()
序列化某对象pickle.dump(x, file)x.__reduce__()
序列化某对象(新 pickling 协议)pickle.dump(x, file, protocol_version)x.__reduce_ex__(protocol_version)
控制 unpickling 过程中对象的创建方式x = pickle.load(file)x.__getnewargs__()
在 unpickling 之后还原对象的状态x = pickle.load(file)x.__setstate__()

* 要重建序列化对象,Python 需要创建一个和被序列化的对象看起来一样的新对象,然后设置新对象的所有属性。__getnewargs__() 方法控制新对象的创建过程,而__setstate__() 方法控制属性值的还原方式。

可在 with 语块中使用的类

with 语块定义了 运行时刻上下文环境;在执行 with 语句时将“进入”该上下文环境,而执行该语块中的最后一条语句将“退出”该上下文环境。

在进入 with 语块时进行一些特别操作with x:x.__enter__()
在退出 with 语块时进行一些特别操作with x:x.__exit__()

以下是 with file 习惯用法 的运作方式:


# excerpt from io.py: def _checkClosed(self, msg=None):  
    '''Internal: raise an ValueError if file is closed '''  
     if self.closed:  
          raise ValueError('I/O operation on closed file.' if msg is None else msg) 
   
def __enter__(self):  
   '''Context management protocol. Returns self.'''  
    self._checkClosed()  
    return self  

def __exit__(self, *args):  
   '''Context management protocol. Calls close()'''  
    self.close()  

  1. 该文件对象同时定义了一个 __enter__() 和一个 __exit__() 方法。该 __enter__() 方法检查文件是否处于打开状态;如果没有, _checkClosed()方法引发一个例外。
  2. __enter__() 方法将始终返回 self —— 这是 with语块将用于调用属性和方法的对象
  3. 在 with 语块结束后,文件对象将自动关闭。怎么做到的?在 __exit__() 方法中调用了 self.close() .

☞该 __exit__() 方法将总是被调用,哪怕是在 with 语块中引发了例外。实际上,如果引发了例外,该例外信息将会被传递给__exit__() 方法。查阅With 状态上下文环境管理器 了解更多细节。

真正神奇的东西

如果知道自己在干什么,你几乎可以完全控制类是如何比较的、属性如何定义,以及类的子类是何种类型。

类构造器x = MyClass()x.__new__()
类析构器del xx.__del__()
只定义特定集合的某些属性 x.__slots__()
自定义散列值hash(x)x.__hash__()
获取某个属性的值x.colortype(x).__dict__['color'].__get__(x, type(x))
设置某个属性的值x.color = 'PapayaWhip'type(x).__dict__['color'].__set__(x, 'PapayaWhip')
删除某个属性del x.colortype(x).__dict__['color'].__del__(x)
控制某个对象是否是该对象的实例 your classisinstance(x, MyClass)MyClass.__instancecheck__(x)
控制某个类是否是该类的子类issubclass(C, MyClass)MyClass.__subclasscheck__(C)
控制某个类是否是该抽象基类的子类issubclass(C, MyABC)MyABC.__subclasshook__(C)
  • 发表于 2019-09-24 10:56
  • 阅读 ( 3195 )
  • 分类:python

0 条评论

请先 登录 后评论
omicsgene
omicsgene

生物信息

698 篇文章

作家榜 »

  1. omicsgene 698 文章
  2. 安生水 347 文章
  3. Daitoue 167 文章
  4. 生物女学霸 120 文章
  5. xun 80 文章
  6. 红橙子 78 文章
  7. rzx 74 文章
  8. CORNERSTONE 72 文章