TCGA中样品取样组织类型编号对照包 sample type

TCGA中样品取样组织类型编号对照包 sample type

其中sample 指示的位置,标记了不同的样品类型,具体如下表所示:官方地址:https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-codes

01  Primary Solid Tumor  TP(实体瘤)
02                      Recurrent Solid Tumor  TR
03Primary Blood Derived Cancer - Peripheral Blood  TB (血液相关癌)
04Recurrent Blood Derived Cancer - Bone Marrow  TRBM
05Additional - New Primary  TAP
06Metastatic  TM
07Additional Metastatic  TAM
08Human Tumor Original Cells  THOC
09Primary Blood Derived Cancer - Bone Marrow  TBM
10Blood Derived Normal  NB (血液癌,正常)
11Solid Tissue Normal  NT(实体瘤,正常)
12Buccal Cell Normal  NBC
13EBV Immortalized Normal  NEBV
14Bone Marrow Normal  NBM
15sample type 15  15SH
16sample type 16  16SH
20Control Analyte  CELLC
40Recurrent Blood Derived Cancer - Peripheral Blood  TRB
50Cell Lines  CELL
60Primary Xenograft Tissue  XP
61Cell Line Derived Xenograft Tissue    XCL
99sample type 99  99SH


延伸阅读

  1. GEO数据库挖掘—WGCNA鉴定骨肉瘤转移相关基因

  2. GEO、TCGA多数据库联合挖掘胰腺导管腺癌预后关键基因

  3. TCGA数据库挖掘-肾细胞癌相关biomiarker筛选案例解析

  4. 文献精读-TCGA数据挖掘生物信息文章(肺鳞癌)

  5. 文献精读-GEO数据挖掘生物信息文章(宫颈癌)

  6. GEO数据挖掘直肠

  7. KM-plotter在线做生存分析

  8. GEO数据如何挖掘?案例解析!

  9. 免费领取生信课程(适合小白自学生信)《Linux生信分析环境搭建Bio-linux》

  10. 细述ceRNA网络研究思路

  11. TCGA数据挖掘文章-分析ceRNA的“套路”


    更多生物信息课程:

    1. 文章越来越难发?是你没发现新思路,基因家族分析发2-4分文章简单快速,学习链接:基因家族分析实操课程基因家族文献思路解读

    2. 转录组数据理解不深入?图表看不懂?点击链接学习深入解读数据结果文件,学习链接:转录组(有参)结果解读转录组(无参)结果解读

    3. 转录组数据深入挖掘技能-WGCNA,提升你的文章档次,学习链接:WGCNA-加权基因共表达网络分析

    4. 转录组数据怎么挖掘?学习链接:转录组标准分析后的数据挖掘转录组文献解读

    5. 微生物16S/ITS/18S分析原理及结果解读OTU网络图绘制cytoscape与网络图绘制课程

    6. 生物信息入门到精通必修基础课:linux系统使用biolinux搭建生物信息分析环境linux命令处理生物大数据perl入门到精通perl语言高级R语言画图R语言快速入门与提高python语言入门到精通

    7. 医学相关数据挖掘课程,不用做实验也能发文章:TCGA-差异基因分析GEO芯片数据挖掘 GEO芯片数据不同平台标准化 、GSEA富集分析课程TCGA临床数据生存分析TCGA-转录因子分析TCGA-ceRNA调控网络分析

    8.其他,二代测序转录组数据自主分析NCBI数据上传二代fastq测序数据解读

    9.全部课程可点击:组学大讲堂视频课程

  • 发表于 2019-10-23 22:13
  • 阅读 ( 10817 )
  • 分类:TCGA

0 条评论

请先 登录 后评论
omicsgene
omicsgene

生物信息

702 篇文章

作家榜 »

  1. omicsgene 702 文章
  2. 安生水 351 文章
  3. Daitoue 167 文章
  4. 生物女学霸 120 文章
  5. xun 82 文章
  6. rzx 78 文章
  7. 红橙子 78 文章
  8. CORNERSTONE 72 文章