R语言基础入门—矩阵介绍

R语言

矩阵

矩阵是其中元素以二维矩形布局布置的R对象, 它们包含相同原子类型的元素。这种数据结构很类似于其它语言中的二维数组,但 R 提供了语言级的矩阵运算支持。

矩阵里的元素可以是数字、符号或数学式。

一个 M x N 的矩阵是一个由 M(row) 行 和 N 列(column)元素排列成的矩形阵列。


attachments-2021-04-AcepmbTg608bba7ae0035.png

以下是一个由 6 个数字元素构成的 2 行 3 列的矩阵:


attachments-2021-04-0O3Hzqg0608bba830471c.png

矩阵创建

R 语言的矩阵可以使用 matrix() 函数来创建,语法格式如下:

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,dimnames = NULL)

参数说明:

  • data 向量,矩阵的数据

  • nrow 行数

  • ncol 列数

  • byrow 逻辑值,为 FALSE 按列排列,为 TRUE 按行排列

  • dimname 设置行和列的名称

创建一个数字矩阵“

# byrow 为 TRUE 元素按行排列
M <- matrix(c(3:14), nrow = 4, byrow = TRUE)
print(M)

# Ebyrow 为 FALSE 元素按列排列
N <- matrix(c(3:14), nrow = 4, byrow = FALSE)
print(N)

# 定义行和列的名称
rownames = c("row1""row2""row3""row4")
colnames = c("col1""col2""col3")

P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames, colnames))
print(P)

执行以上代码输出结果为:
[,1] [,2] [,3]
[1,]    3    4    5
[2,]    6    7    8
[3,]    9   10   11
[4,]   12   13   14
     [,1] [,2] [,3]
[1,]    3    7   11
[2,]    4    8   12
[3,]    5    9   13
[4,]    6   10   14
     col1 col2 col3
row1    3    4    5
row2    6    7    8
row3    9   10   11
row4   12   13   14

转置矩阵

R 语言矩阵提供了 t() 函数,可以实现矩阵的行列互换。

例如有个 m 行 n 列的矩阵,使用 t() 函数就能转换为 n 行 m 列的矩阵。

attachments-2021-04-YAeCUIZL608bba90734e7.png

# 创建一个 2 行 3 列的矩阵
M = matrix( c(2,6,5,1,10,4), nrow = 2,ncol = 3,byrow = TRUE)
print(M)
     [,1] [,2] [,3]
[1,]    2    6    5
[2,]    1   10    4
# 转换为 3 行 2 列的矩阵
print(t(M))

执行以上代码输出结果为:
     [,1] [,2] [,3]
[1,]    2    6    5
[2,]    1   10    4
 "-----转置后-----"
     [,1] [,2]
[1,]    2    1
[2,]    6   10
[3,]    5    4

矩阵有一个dim属性,内容是两个元素的向量, 两个元素分别为矩阵的行数和列数。dim属性可以用dim()函数访问。如

# 创建一个 2 行 3 列的矩阵
M = matrix( c(2,6,5,1,10,4), nrow = 2,ncol = 3,byrow = TRUE)
print(M)
     [,1] [,2] [,3]
[1,]    2    6    5
[2,]    1   10    4

dim(A)
[12 3

访问矩阵元素

如果想获取矩阵元素,可以通过使用元素的列索引和行索引,类似坐标形式。

# 定义行和列的名称
rownames = c("row1""row2""row3""row4")
colnames = c("col1""col2""col3")

# 创建矩阵
P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames, colnames))
print(P)
# 获取第一行第三列的元素
print(P[1,3])

# 获取第四行第二列的元素
print(P[4,2])

# 获取第二行
print(P[2,])

# 获取第三列
print(P[,3])

执行以上代码输出结果为:

     col1 col2 col3
row1    3    4    5
row2    6    7    8
row3    9   10   11
row4   12   13   14

[15

[113

 col1 col2 col3 
    6    7    8 

 row1 row2 row3 row4 
    5    8   11   14 

矩阵计算

大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的列数等于第二个矩阵的行数。

矩阵加减法

# 创建 2 行 3 列的矩阵
matrix1 <- matrix(c(7, 9, -1, 4, 2, 3), nrow = 2)
print(matrix1)

matrix2 <- matrix(c(6, 1, 0, 9, 3, 2), nrow = 2)
print(matrix2)

# 两个矩阵相加
result <- matrix1 + matrix2
cat("相加结果:","\n")
print(result)

# 两个矩阵相减
result <- matrix1 - matrix2
cat("相减结果:","\n")
print(result)

执行以上代码输出结果为:

     [,1] [,2] [,3]
[1,]    7   -1    2
[2,]    9    4    3
     [,1] [,2] [,3]
[1,]    6    0    3
[2,]    1    9    2
相加结果: 
     [,1] [,2] [,3]
[1,]   13   -1    5
[2,]   10   13    5
相减结果: 
     [,1] [,2] [,3]
[1,]    1   -1   -1
[2,]    8   -5    1

矩阵乘除法

# 创建 2 行 3 列的矩阵
matrix1 <- matrix(c(7, 9, -1, 4, 2, 3), nrow = 2)
print(matrix1)

matrix2 <- matrix(c(6, 1, 0, 9, 3, 2), nrow = 2)
print(matrix2)

# 两个矩阵相乘
result <- matrix1 * matrix2
cat("相乘结果:","\n")
print(result)

# 两个矩阵相除
result <- matrix1 / matrix2
cat("相除结果:","\n")
print(result)
执行以上代码输出结果为:

     [,1] [,2] [,3]
[1,]    7   -1    2
[2,]    9    4    3
     [,1] [,2] [,3]
[1,]    6    0    3
[2,]    1    9    2
相乘结果: 
     [,1] [,2] [,3]
[1,]   42    0    6
[2,]    9   36    6
相除结果: 
         [,1]      [,2]      [,3]
[1,] 1.166667      -Inf 0.6666667
[2,] 9.000000 0.4444444 1.5000000

此外,我们在网易云课堂上有各种教学视频,有兴趣可以了解一下:

1. 文章越来越难发?是你没发现新思路,基因家族分析发2-4分文章简单快速,学习链接:基因家族分析实操课程

2. 转录组数据理解不深入?图表看不懂?点击链接学习深入解读数据结果文件,学习链接:转录组(有参)结果解读转录组(无参)结果解读

3. 转录组数据深入挖掘技能-WGCNA,提升你的文章档次,学习链接:WGCNA-加权基因共表达网络分析

4. 转录组数据怎么挖掘?学习链接:转录组标准分析后的数据挖掘

5. 微生物16S/ITS/18S分析原理及结果解读

6. 更多学习内容:linux、perl、R语言画图,更多免费课程请点击以下链接:

https://study.omicsclass.com/



  • 发表于 2021-04-30 16:05
  • 阅读 ( 2822 )
  • 分类:R

0 条评论

请先 登录 后评论
安生水
安生水

351 篇文章

作家榜 »

  1. omicsgene 702 文章
  2. 安生水 351 文章
  3. Daitoue 167 文章
  4. 生物女学霸 120 文章
  5. xun 82 文章
  6. rzx 78 文章
  7. 红橙子 78 文章
  8. CORNERSTONE 72 文章