两款计算肿瘤纯度的R包,
ESTIMATE: 利用表达数据计算基质与免疫评分,预测肿瘤纯度;
ABSOLUTE :是能够定量肿瘤细胞纯度、倍性、绝对拷贝数的包;
ESTIMATE就是一种预测肿瘤纯度的工具,使用表达数据估计恶性肿瘤组织中的基质细胞和免疫细胞并且可以利用基因表达数据预测肿瘤组织中浸润的基质/免疫细胞的存在。该算法基于单个样本基因集合的富集分析,产生三个得分:
①基质评分(记录肿瘤组织中基质的存在)
②免疫评分(代表肿瘤组织中免疫细胞的浸润)
③估计分数(推断肿瘤纯度)
免疫微环境分析的两种主流方法为CIBERSORT与ssGSEA
CIBERSORT:优势:R包简便,也有网页在线操作优势显而易见。“LM22”文件中只有22种免疫细胞。
ssGSEA :根据输入的gmt文件即可指定免疫细胞,之后对每个样本计算出其免疫细胞的富集得分。其中最明显的特征就是可以高度定制化。
[1] Subramanian A, et al."Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles."Proc Natl Acad Sci U S A 2005, 102:15545-15550.
[2] Barbie DA, et al."Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1."Nature 2009, 462:108-112.
[3] Verhaak RG, et al."Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1."Cancer Cell 2010, 17:98-110.
[1] https://www.genepattern.org/modules/docs/ABSOLUTE/2
[2] http://software.broadinstitute.org/cancer/cga/absolute_run
[3] http://software.broadinstitute.org/cancer/software/genepattern/analyzing-absolute-data
[4] Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, Beroukhim R, Pellman D, Levine DA, Lander ES, Meyerson M, Getz G. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol. 2012;30(5):413-21.
[1] GSVA: The Gene Set Variation Analysis package for microarray and RNA-seq data
[2] Xue Y, Tong L, LiuAnwei Liu F, et al. Tumor‑infiltrating M2 macrophages driven by specific genomic alterations are associated with prognosis in bladder cancer. Oncol Rep. 2019;42(2):581-594. doi:10.3892/or.2019.7196
[3] Jia Q, Wu W, Wang Y, et al. Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer. Nat Commun. 2018;9(1):5361. Published 2018 Dec 18. doi:10.1038/s41467-018-07767-w
如果觉得我的文章对您有用,请随意打赏。你的支持将鼓励我继续创作!