TCGA SNV 体细胞突变下载

TCGA SNV 体细胞突变下载

###############################################################################################
##########加载需要的包 ,包不存在就安装
#############################################################
package_list <- c("TCGAbiolinks","tidyverse","maftools")
for(p in package_list){
  if(!suppressWarnings(suppressMessages(require(p, character.only = TRUE, quietly = TRUE, warn.conflicts = FALSE)))){
    if (!requireNamespace("BiocManager", quietly = TRUE))
      install.packages("BiocManager")
    BiocManager::install(p)
    suppressWarnings(suppressMessages(library(p, character.only = TRUE, quietly = TRUE, warn.conflicts = FALSE)))
  }
}

query <- GDCquery(
  project = "TCGA-STAD",
  data.category = "Simple Nucleotide Variation",
  data.type = "Masked Somatic Mutation",
  access = "open"
)
GDCdownload(query )
# 保存整理下载数据结果
maf.data <- GDCprepare(query )
write.table(data.frame(maf.data,check.names = F), file ='maf.tsv', sep="\t",row.names =F, quote = F)

######################################################################
# maftools plot
#######################################################################
selcol=c("Hugo_Symbol", "Chromosome", "Start_Position", "End_Position", "Reference_Allele", "Tumor_Seq_Allele2", "Variant_Classification", "Variant_Type" , "Tumor_Sample_Barcode")
maftools_df=maf.data[,selcol]
write.table(data.frame(maftools_df,check.names = F), file = paste0(opt$outdir,"/",opt$project,'_maftools_df.maf'), sep="\t",row.names =F, quote = F)

maf = read.maf(maf =paste0(opt$outdir,"/",opt$project,'_maftools_df.maf') )


pdf("maf_tmb.pdf",w=8,h=8)
#计算TMD
maf.tmd = tmb(maf = maf,
            captureSize = 50,
            logScale = TRUE)
maf.tmd<-as.data.frame(maf.tmd)
head(maf.tmd)
dev.off()
a<-t(as.data.frame(strsplit(as.character(maf.tmd$Tumor_Sample_Barcode),"-")))
patientID<-paste0(a[,1],"-",a[,2],"-",a[,3])


write.table(data.frame(maf.tmd,patient=patientID),file="tmb.tsv",sep="\t",quote = F,row.names = F)
pdf("maf_plot.pdf",w=5,h=5)
plotmafSummary(maf = maf, rmOutlier = TRUE, addStat = 'median', dashboard = TRUE,titvRaw = FALSE)
oncoplot(maf = maf, top = 10)
titv = titv(maf = maf, plot = FALSE, useSyn = TRUE)
#plot titv summary
plotTiTv(res = titv)
dev.off()





attachments-2022-08-SMDozD2d630379e328bb3.png




attachments-2022-08-gAEuBINB630379f5cb4b3.png



attachments-2022-08-Unc5EQyA63037a09d0f22.png


|sort(harmonized.data.type)          |
|:-----------------------------------|
|Aggregated Somatic Mutation         |
|Aligned Reads                       |
|Allele-specific Copy Number Segment |
|Annotated Somatic Mutation          |
|Biospecimen Supplement              |
|Clinical Supplement                 |
|Copy Number Segment                 |
|Differential Gene Expression        |
|Gene Expression Quantification      |
|Gene Level Copy Number              |
|Gene Level Copy Number Scores       |
|Isoform Expression Quantification   |
|Masked Copy Number Segment          |
|Masked Intensities                  |
|Masked Somatic Mutation             |
|Masked Somatic Mutation             |
|Methylation Beta Value              |
|miRNA Expression Quantification     |
|Protein Expression Quantification   |
|Protein Expression Quantification   |
|Raw CGI Variant                     |
|Raw Simple Somatic Mutation         |
|Single Cell Analysis                |
|Slide Image                         |
|Splice Junction Quantification      |


  • 发表于 2022-08-22 20:39
  • 阅读 ( 2403 )
  • 分类:TCGA

0 条评论

请先 登录 后评论
omicsgene
omicsgene

生物信息

702 篇文章

作家榜 »

  1. omicsgene 702 文章
  2. 安生水 351 文章
  3. Daitoue 167 文章
  4. 生物女学霸 120 文章
  5. xun 82 文章
  6. rzx 78 文章
  7. 红橙子 78 文章
  8. CORNERSTONE 72 文章