数据下载:
wget -c "https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE123904&format=file" -O GSE123904_RAW.tar
tar xvf GSE123904_RAW.tar
准备map.txt文件:
LX653PRIMARY_TUMOUR
LX676PRIMARY_TUMOUR
LX682PRIMARY_TUMOUR
LX699METASTASIS
LX661PRIMARY_TUMOUR
LX255BMETASTASIS
LX682NORMAL
LX701METASTASIS
LX666METASTASIS
LX679PRIMARY_TUMOUR
LX684PRIMARY_TUMOUR
LX675PRIMARY_TUMOUR
LX680PRIMARY_TUMOUR
LX684NORMAL
LX675NORMAL
LX681METASTASIS
LX685NORMAL
读入数据:
cat map.txt |while read s t;do
Rscript $scripts/seurat_sc_qc.r --count *_${s}_${t}_dense.csv.gz --project GSE123904 \
--metadata.col.name project Capture.Method Sample Tissue\
--metadata.value $project 10X3 $s $t\
--transpose --sep ',' \
--nUMI.min 500 \
--nUMI.max 40000 \
--nGene.min 250 \
--mito.gene.pattern "^MT.*-" \
--percent_mito 20 \
--log10GenesPerUMI 0.7 \
-p ${s}_$t
done
#合并数据
Rscript $scripts/merge_seurat_obj.r -i `ls *.afterQC.rds` \
-o $project/01.qc -p lung
如果觉得我的文章对您有用,请随意打赏。你的支持将鼓励我继续创作!