下图为miRNA与靶基因相关性图,这里简单介绍下如何作图。
首先,要生成作图的输入文件,有脚本,用法如下:
perl Correlation_analysis.pl -mirna Donkey_E_vs_Donkey_T.DEG.final.xls -DE_tar targets.final.xls -list bta.mir2target.list -out Correlation_analysis_input.txt
#ID Donkey2_E_Count Donkey1_T_Count Donkey2_E_TPM Donkey1_T_TPM FDR log2FC regulated
bta-miR-106a 26 113 1.164865 54.990056 3.20268371822863e-08 4.02066488557677 up
bta-miR-10a 166025 1771 7438.335738 861.835296 0.000238871249442218 -4.55148673628311 down
bta-miR-135a 5631 114 252.2829 55.476693 0.00268305048158635 -3.62181067749427 down
bta-miR-135b 25 89 1.120063 43.310752 6.41785537824902e-07 3.73045876228641 up
bta-miR-141 1201 2 53.807807 0.973275 2.17196461482771e-07 -6.91926313309958 down
bta-miR-182 1882 33 84.318313 16.059043 0.00119553585103038 -3.81519649022355 down
bta-miR-183 1544 40 69.175066 19.465506 0.00778797871791981 -3.25606929861198 down
bta-miR-187 0 18 0 8.759478 6.10013036195234e-07 5.24714335099614 up
bta-miR-196a 2871 31 128.627989 15.085767 0.000103494675187443 -4.51281538763237 down
bta-let-7a-3p EAS0021476;EAS0000070;EAS0013638;EAS0001074;EAS0004577;EAS0006787;EAS0008899;EAS0013962;EAS0017655;EAS0005413;EAS0006009
bta-let-7a-5p EAS0008419;EAS0003830;EAS0009803;EAS0011296;EAS0005793;EAS0004645;EAS0014772
bta-let-7b EAS0017817;EAS0013474;EAS0008780;EAS0018405;EAS0017359;EAS0017674;EAS0020797;EAS0015379;EAS0011272;EAS0010435;EAS0013631
bta-let-7c EAS0006104;EAS0004549;EAS0003321;EAS0010481;EAS0021491;EAS0015994;EAS0001788;EAS0002956;EAS0007473;EAS0008880;EAS0007345;EAS0003066
bta-let-7d EAS0005004;EAS0009924;EAS0020635;EAS0002650;EAS0011574
最后生成的文件如下所示:
miRNA Gene log2Ratio_miR log2Ratio_Gene
bta-let-7c EAS0003321 -1.43072567351625 1.37874741391777
bta-let-7c EAS0007345 -1.43072567351625 1.11756970634256
bta-let-7c EAS0003066 -1.43072567351625 1.67994238012443
bta-let-7c EAS0017368 -1.43072567351625 3.05079253633835
bta-let-7c EAS0004422 -1.43072567351625 1.50329494091278
bta-let-7c EAS0003988 -1.43072567351625 1.18612566219656
bta-let-7c EAS0005608 -1.43072567351625 1.89027598062113
bta-let-7c EAS0012078 -1.43072567351625 3.50870147552217
bta-let-7c EAS0015105 -1.43072567351625 1.06781330535694
bta-let-7c EAS0020084 -1.43072567351625 1.10413933910007
有了输入文件,然后就可以作图了,作图脚本比较简单,用法:
Rscript correlation_analysis.R -i Correlation_analysis_input.txt -n Correlation_analysis
脚本代码:
library(ggplot2)
library('getopt');
spec = matrix(c(
'help' , 'h', 0, "logical","for help",
'input' , 'i', 1, "character","input file ,required",
'name' , 'n', 1, "character","photo name"
), byrow=TRUE, ncol=5);
opt = getopt(spec);
print_usage <- function(spec=NULL){
cat(getopt(spec, usage=TRUE));
q(status=1);
}
if ( !is.null(opt$help) ) { print_usage(spec) }
if ( is.null(opt$input) ){ print_usage(spec) }
if ( is.null(opt$name) ){ opt$name = "Correlation analysis" }
point <- read.table(opt$input,sep="\t",header = TRUE,comment.char = "")
p <- ggplot(point, aes(x=log2Ratio_miR, y=log2Ratio_Gene)) + geom_point(size=0.01,colour="red")+
theme(
######取消默认的背景颜色方框等
panel.background = element_rect(fill = "transparent",colour = "black"),
panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
plot.background = element_rect(fill = "transparent",colour = "black"))
#输出文件名称
png_name=paste(opt$name, ".png", sep="")
pdf_name=paste(opt$name, ".pdf", sep="")
#输出pdf格式图片
pdf(pdf_name,width =3,height = 3)
print(p)
dev.off()
#输出png格式图片
png(png_name,width =2000,height =2000,res = 500,units = "px")
print(p)
dev.off()
如果觉得我的文章对您有用,请随意打赏。你的支持将鼓励我继续创作!