基于R实现统计中的检验方法---T检验

基于R实现统计中的检验方法---T检验

前言

T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。


1.适用条件

已知一个总体均数;可得到一个样本均数及该样本标准差;样本来自正态或近似正态总体。

备注:若是单独样本T检验,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件是该组资料必须服从正态分布;若是配对样本T检验,每对数据的差值必须服从正态分布;若是独立样本T检验,个体之前相互独立,两组资料均取自正态分布的总体,并满足方差齐性。之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。后面的方差分析,其独立样本T检验的前提条件是相同的,即正态性额方差齐性。(参考:t检验和方差分析的前提条件及应用误区_百度文库(链接见文末)说的非常详细)

2.分类

单总T检验(单独样本T检验),双总T检验(一是独立样本T检验,另一是配对样本T检验)

备注:单独样本T检核与独立样本T检验的区别。单独样本T检验(One-Samples T Test)用于进行样本所在总体均数与已知总体均数的比较,独立样本T检验(Independent-Samples T Test)用于进行两样本均数的比较。

3.R实例

  —————————#单样本T检验#——————————————
 #某鱼塘水的含氧量多年平均值为4.5mg/L,现在该鱼塘设10点采集水样,测定水中含氧量(单位:mg/L)分别为:
 #4.33,4.62,3.89,4.14,4.78,4.64,4.52,4.55,4.48,4.26,问该次抽样的水中含氧量与多年平均值是否有显著差异?
 Sites<-c(4.33,4.62,3.89,4.14,4.78,4.64,4.52,4.55,4.48,4.26)
 t.test(sites,mu=4.5)
         One Sample t-test
 
 data:  sites
 t = -0.93574, df = 9, p-value = 0.3738
alternative hypothesis: true mean is not equal to 4.5
95 percent confidence interval:
 4.230016 4.611984
sample estimates:
mean of x 
    4.421 
p=0.3738>0.05,认为所抽样水体的含氧量与多年平均值无显著差异

—————————#独立样本T检验#——————————————
#有两种情况,一种是两个总体方差齐性,另一种是两个总体方差不齐。
#################两样本方差齐性
#用高蛋白和低蛋白两种饲料饲养1月龄的大白鼠,饲养3个月后,测定两组大白鼠的增重量(g),两组数据分别如下所示:
#高蛋白组:134,146,106,119,124,161,107,83,113,129,97,123
#低蛋白组:70,118,101,85,107,132,94
#试问两种饲料养殖的大白鼠增重量是否有显著差异?
High<-c(134,146,106,119,124,161,107,83,113,129,97,123)
Low<-c(70,118,101,85,107,132,94)
Group<-c(rep(1,12),rep(0,7))#1表示High,0表示Low
x<-c(High,Low)
DATA<-data.frame(x,Group)
DATA$Group<-as.factor(DATA$Group)
#bartlett.test方差齐性检验
bartlett.test(x~Group)
        Bartlett test of homogeneity of variances

data:  x by Group
Bartlett's K-squared = 0.0066764, df = 1, p-value = 0.9349

#var.test方差齐性检验
var.test(x~Group)
 F test to compare two variances

data:  x by Group
F = 0.94107, num df = 6, denom df = 11, p-value = 0.9917
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.2425021 5.0909424
sample estimates:
ratio of variances 
          0.941066 

#leveneTest方差齐性检验(也是SPSS的默认方差齐性检验方法)
library(car)
leveneTest(DATA$x,DATA$Group)
Levene's Test for Homogeneity of Variance (center = median)
      Df F value Pr(>F)
group  1  0.0088 0.9264
      17              
#前两者是对原始数据的方差进行检验的,leveneTest是对方差模型的残差进行组间齐性检验.一般认为是要求残差的方差齐,所以一般的统计软件都做的是leveneTest
#结果说明两独立样本数据方差齐性,可以进行独立样本T检验。
t.test(High,Low,paired=FALSE)
        Welch Two Sample t-test

data:  High and Low
t = 1.9319, df = 13.016, p-value = 0.07543
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.263671 40.597005
sample estimates:
mean of x mean of y 
 120.1667  101.0000 
结果表明两种饲料养殖的大白鼠增重量无显著差异。

#################两样本方差不齐
#有人测定了甲乙两地区某种饲料的含铁量(mg/kg),结果如下:
#甲地:5.9,3.8,6.5,18.3,18.2,16.1,7.6
#乙地:7.5,0.5,1.1,3.2,6.5,4.1,4.7
#试问这种饲料含铁量在两地间是否有显著差异?
JIA<-c(5.9,3.8,6.5,18.3,18.2,16.1,7.6)
YI<-c(7.5,0.5,1.1,3.2,6.5,4.1,4.7)
Content<-c(JIA,YI)
Group<-c(rep(1,7),rep(2,7))#1表示甲地,2表示乙地
data<-data.frame(Content,Group)
data$Group<-as.factor(Group)

#bartlett.test方差齐性检验
bartlett.test(Content~Group)
 Bartlett test of homogeneity of variances

data:  Content by Group
Bartlett's K-squared = 3.9382, df = 1, p-value = 0.0472

#var.test方差齐性检验
var.test(Content~Group)
 F test to compare two variances

data:  Content by Group
F = 5.9773, num df = 6, denom df = 6, p-value = 0.04695
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
  1.02707 34.78643
sample estimates:
ratio of variances 
            5.9773 
#结果说明两独立样本数据方差不齐,对齐进行方差不齐分析
t.test(Content,Group,paired=FALSE,var.equal=FALSE)
Welch Two Sample t-test

data:  Content and Group
t = 3.7511, df = 13.202, p-value = 0.002362
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 2.519419 9.337724
sample estimates:
mean of x mean of y 
 7.428571  1.500000 
#方差齐性检验表明,方差不等,因此设定var.equal=FALSE,此时p=0.0023<0.05,
#表明该饲料在两地的含铁量有显著差异。


—————————#配对样本T检验#——————————————
#某人研究冲水对草鱼产卵率的影响, 获得冲水前后草鱼产卵率(%),如下:
#冲水前:82.5,85.2,87.6,89.9,89.4,90.1,87.8,87.0,88.5,92.4
#冲水后:91.7,94.2,93.3,97.0,96.4,91.5,97.2,96.2,98.5,95.8
#问:冲水前后草鱼亲鱼产卵率有无差异?
Before<-c(82.5,85.2,87.6,89.9,89.4,90.1,87.8,87.0,88.5,92.4)
After<-c(91.7,94.2,93.3,97.0,96.4,91.5,97.2,96.2,98.5,95.8)
t.test(Before,After,paired=T)
        Paired t-test

data:  Before and After
t = -7.8601, df = 9, p-value = 2.548e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -9.1949 -5.0851
sample estimates:
mean of the differences 
                  -7.14 
结果表明,p=2.548e-05<0.01,表明冲水前后,草鱼亲鱼的产卵率有非常显著差异。

------------------------备注---------------------------
1)会有很多同学疑惑(Professionals don't laugh),为什么独立样本T检验有方差相等/不相等之分,而配对样本T检验/单样本T检验没有?
2)t.test(x,y,alternative=c("two.sided","less","greater"),mu=0,paired=FALSE,
var.equal=FALSE,conf.level=0.95......)
如果只提供x,则作单个正态总体的均值检验,如果提供x,y则作两个总体的均值检验),alternative表示被则假设,
two.sided(缺省),双边检验,less表示单边检验,greater表示单边检验,mu表示原假设μ0,若 paired=T,为配对检验,
则必须指定x和y,并且它们必须是相同的长度。默认删除缺失值(如果配对为TRUE,则成对配对),var.equal是逻辑变量,
var.equal=TRUE表示两样品方差相同,var.equal=FALSE(缺省)表示两样本方差不同,conf.level置信水平,即1-α,通常是0.95,。

参考

[1]顾志峰,叶乃好,石耀华.实用生物统计学[M].北京:科学出版社,2012年.

[2]t检验和方差分析的前提条件及应用误区_百度文库

https://wenku.baidu.com/view/c3f1e06b5727a5e9846a6117.html

  • 发表于 2019-02-28 22:20
  • 阅读 ( 5378 )
  • 分类:R

0 条评论

请先 登录 后评论
omicsgene
omicsgene

生物信息

702 篇文章

作家榜 »

  1. omicsgene 702 文章
  2. 安生水 351 文章
  3. Daitoue 167 文章
  4. 生物女学霸 120 文章
  5. xun 82 文章
  6. rzx 78 文章
  7. 红橙子 78 文章
  8. CORNERSTONE 72 文章